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Ab%tract. We compute zeros of Mellin transforms of modular cusp forms for SL,(Z). Such 
Mellin transforms arc cigenforms of Hecke operators. We recall that, for all weights k and all 
dimensions of cusp forms, thc Mellin transforms of cusp forms have infinitely many zeros of 
the form A/2 + t - .i.e. infinitely many zeros on the critical line. 

A new hasis theorem for the space of cusp forms is given which, together with the Selberg 
trace formula, renders practicable the explicit computations of the algebraic Fourier coeffi- 
cients of cusp eigenforms required for the computations of the zeros. 

The first forty of these Mellin transforms corresponding to cusp eigenforms of weight 
A k 50 and dimension < 4 are computed for the sections of the critical strips, a + ti.lT 
K - I < 2a < A + 1, -40 < t < 40. The first few zeros lie on the respective critical lines 
A/2 + tV- I and are simple. A measure argument, depending upon the Riemann hypothesis 
for finite fields, is given which shows that Hasse-Weil l,-functions (including the above) lie 

among Dirichlet series which do satisfy Riemann hypotheses (but which need not have 
functional equations nor analytic continuations). 

1. Introduction. Zeros are computed explicitly for an important family of examples 
associated with Hecke operators for the modular group SL2(Z). The modular cusp 
forms have specially multiplicative Fourier coefficients which we compute from the 
Selberg trace formula and from a new practical basis theorem for the cusp forms. 
Forty distinct L-functions were computed for k an even integer, 12 < k < 50, 
dimensions 0 to 4. In each of these forty and thirteen other cases, the rectangle a + 
ti-i, k - 1 < 2a < k + 1, -40 < t < 40, was examined for all zeros. Rankin [31] 
proved along with a functional equation that there are no zeros in the respective half 
planes 20 < k - 1, 20 > k + 1, so that it is sufficient to restrict attention to the 
critical strip k - 1 < 2a < k + 1. All zeros in the rectangles we have investigated, k 
fixed, lie on the line 2a = k and are simple. 

We show that there exists an infinitude of zeros on the critical line Re(s) = k/2 of 
Mellin transforms of cusp forms of weight k for SL2(Z). We conclude that this is 
also true for Hasse-Weil L-functions of Kuga varieties. 
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2. SL,(Z) L-Functions. Rankin's book [32] contains background on modular 
forms, as does that of Serre [371 and Lang [191. We establish enough notation to 
attach a Dirichlet series to a modular form. The discrete matrix group SL2(Z) acts 
on the complex upper half-plane via fractional linear transformations. A modular 
form of weight an even integer k is a function on the upper half-plane with 
invariance properties with respect to the SL2(Z) action. A cusp form is a modular 
form which will vanish at the cusp and have Fourier coefficients a(n). Let f(u) = 

E2,,>, a(n)e-27r"" and satisfy the functional equation f(l/u)= (_l)A/2uAf(u). The 
dimension of the space of cusp forms CA of weight k > 2 for SL,(Z) is 

(-1)A/2 k - 1 1 2sin(k -1)/3 dim( - -4 + 12 2 313 

The dimensions and weights relevant to our computational work appear in Table I. 
Hecke [11] introduced a commutative algebra of operators Hermitian with respect to 
the Peterson inner product on cusp forms. Thus any SL2(Z) cusp form can be 
written as a linear combination of eigenforms of these Hecke operators, and the 
Fourier coefficients of a cusp form can be had from those of the cusp eigenfunctions. 
That a cusp eigenform has specially multiplicative Fourier coefficients implies that 
its Mellin transform has an Euler product. Take the Mellin transform of the cusp 
form to get the Dirichlet series 

La,(s)= t f tf(t)dlog t= F(s) 
a 

(n) 
t)l(2vn) 

F(s) 
- H( f I1/HA, ( pvS, f, p). 

(27r)' p 

TABLE I 

dim C, associated weights k 

0 2, 4, 6, 8, 10, 14, 
1 12, 16, 18, 20, 22, 26, 
2 24,28,30,32,34,38, 
3 36, 40, 42, 44, 46, 50, 
4 48. 

The Hecke polynomial HA(T, f, p) = I - a(p)T + p- T2 divides the k - 1st 
Betti polynomial of a Kuga variety; cf., Ihara [14], Kuga and Shimura [17], Deligne 
[5]. A consequence of the Riemann hypotheses for finite fields is the inequality 
Ia(n)l < d(n)n(A-0)/2, d(n) = number of divisors of n; this is the Ramanujan- 
Petersson conjecture [30]. The Dirichlet series LA (s) was studied extensively in 
Rankin [31], Goldstein [9] has proven Merten-type conditions for Lk(s), Moreno 
[24], [25] has proven von Mangoldt formulas for Lk (s) in a more general setting, see 
e.g., Langlands [20]. From the functional equation for the cusp form f we have the 
following; cf., Barrucand [2], 

L (s) = Lk (S f a(n) fF(s,27rn) + ( )k/2 r(k - s,2'zTn) ) 
\(2Tnn) s (2Tn) k fr s 
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where 

r(s, M) =fuse?u dlog u 

is the usual incomplete gamma function. 
Symmetry up to sign under the map s -5 k - s of the right-hand side of the above 

equality gives the functional equation 

Lk(k - s) = (-1) klL(s)- 

In particular, if k is not divisible by four, s = k/2 is a root of L*(s). Also note that 
Lk (k/2 + t -1 ) is either totally real or purely imaginary depending upon the parity 
of k/2. 

The incomplete gamma function r(s, M) can be evaluated for complex s by 
continued fractions, Abramowitz, Stegun, Davis [1], Terras [431, [441 or more 
efficiently by a Laguerre expansion, Henrici [ 12, pp. 628-630]. 

To compute LA(s) one must estimate the tail, restricting our attention to the strip 
k - 2 < 2 Re(s) < k + 2. Keeping the above notations, we have 

E a(n) 0( Us + (_l) k2uk s)e - 2hnu dlog u <4N (k + 1)/2e-2wN 
ni>N IT 

for IRe(s) - k/21 < 1, N > (k + 1)/21T. In the proof of this inequality the above 
has been used as well as the fact, Olver [27, p. 70], that if M > 2 Re(s), IJ(s, M)l < 
2MRe(s) -'e-M. Note that this series, geometric in e2 > 535, is fairly rapidly 
convergent. The difficulty in computing these Dirichlet series in this way is that a 
good deal of cancellation takes place among the terms and so it is important to carry 
precision adequate for Im(-). Recall that the first term is essentially e- 2T, but that 
(by the Riemann-Lebesgue lemma) the function becomes small as Im(s) increases. 

Explicit computation of the Fourier coefficients of the cusp eigenfunctions is 
required to compute L*(s). In general, these coefficients are algebraic numbers, 
Rankin-Rushforth [33]; however, the traces of the Hecke operators themselves are 
integers. It will be possible, using the basis theorem below, to calculate the algebraic 
numbers from the traces. Formulas for the traces have been known for some time, 
Selberg [35], Eichler [8], Duflo-Labesse [7], Lang [19], Zagier [52]. As can be seen 
from the Selberg trace formula, the precision size for the computation of a(n) is 
about nk/2, almost as efficient as the Ramanujan-Petersson inequality allows. We 
calculated the first thousand of these traces for k from 12 to 26. Many require 
multiple precision to compute, but those required for the computation of the 
L-functions are small enough to fit in double precision. For k = 12 our integers 
agree with the (n) of Ramanujan [30], Watson [49] and Lehmer [21]. For k > 14 
these coefficients have not been computed extensively. Ours agree with the three 
offered by Lehmer [22] for k = 24. 

If for each p there are dim Ck distinct relatively prime Hecke polynomials, then 
the product of all of them will divide the k - 1st Betti polynomial. The associated 
Dirichlet series L(6)(s), I < 8 < dim Ck, are parametrized by roots of a degree 
dim Ck polynomial equation in one variable with integer coefficients. Setting 

Lk(s) = li Lw)(s), 
I <8< dim Ck 
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yields the functional equation 

L A(S) ( l)Adim(A/2LA(k - s) 

and the roots of this correspond to the union of roots of the individual L(')(s), 
I < 8 < dim CA.. It is of interest to know if any of these roots of the union are 
duplicated, i.e., if the roots of L,A(s) are simple or not. In the computations done for 
each dimension so far there are no duplications, Im(s) * 0, suggesting that the roots 
of the "big" Hecke factor LA (s) are simple and lie on the critical line. 

We pause to point out that another example of a zeta function defined by Hecke 
operators, Hecke [11], is g(s)t,(s - k + 1), the Mellin transform of an Eisenstein 
series, a modular form which is not a cusp form. c(s) is the classical zeta function 
and the lines Re(s)= ' and Re(s) = k - ' have been extensively investigated, 
Brent [4]. 

3. A Basis Theorem for Cusp Forms and Computation of the Algebraic Numbers. 
We emphasize that it is not enough for our purposes to give characteristic polynomi- 
als for the Hecke operators, TA (n), or even the eigenvalues of T, (1?) in some order, 
possibly different for each n; cf, Wada [46]. We require explicit and computable 
bases for the space of cusp forms C,. When dim C, = 0, k = 2, 4, 6, 8, 10, 14, all the 
coefficients excepting the first are zero and LA (s) I (so that the Riemann 
hypothesis in this case is trivially true). When dim C, = 1, then the trace is the 
coefficient. In general, for dim CA, > 1, we define cusp forms 

AA'(U)= E ak.(f1)e 

by setting 

()_ trace T,(n) 

dim C 

so that a,(l) = 1. The A, are cusp forms of weight k and they are sums of cusp 
eigenforms. For dim C, = 1 they are eigenforms, for example 

12 (u) = A(u) = e - 27u 11 (1 - e2,r rn u)24 T(n) .s, 
flz> I /1? I 

the 24th power of the Dedekind 71-function, Ramanujan [30], Gunning [10]. 
For 1 < 8 < dim CA let each cusp eigenform of the commuting family of Hecke 

operators, TA,(n): C;,. C,., be denoted by 

F,8')(u) = 1,)(n)e 

where the kk( n) are the Fourier coefficients we seek for the L-function 

Lk(s,8) = F(S) E (n ). 
, (27Tn)s 

Then by arguments similar to those for the proof of the basis Theorem 6.1.2 of 
Rankin [31, p. 198] we have 

FA8) k & + Y, xp,, 8 AI,* 
P- + - P 
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where 'P is a finite class of dim Ck - 1 partitions of k into exactly 2, 3,..., dim Ck 
parts. The xp are algebraic numbers which can be determined from the special 
multiplicativity properties of the coefficients of Fk(). 

The advantage of this particular basis theorem is for numerical computation with 
exact integers. The magnitude of integers involved in computing the integers, trace 
T, (n), from the Selberg trace formula is 0(n k/2), whereas the integer magnitude 
required to compute just the coefficient of the basis functions for Rankin's, Hecke's 
or Ramunujan's versions could be as high as 0(n k+k2/24), clearly impractical even 
for the range in which we have done the computation 12 < k < 50. 

The particular partitions for dim Ck > 1 employed in the present work are listed 
in Table II. 

The problem of finding the algebraic numbers xp s is touched on for k = 24 in 
Hecke [11], sketched briefly for dim Ck = 2 and k = 36 in Lehmer [22] and, with a 
complicating basis, dealt with for dim Ck = 2 in Rankin [32]. It turns out that the 
particular bases chosen here lead to some coincidental simplifications in the size of 
the xp ̂  and the size of the coefficients of the polynomial equations they satisfy. For 
convenience set t = e 2X", 

Ak(u) = E ak(n)tn, 

Ak,(u)Ak2(u) = E bk(n)t", k = k1 + k2, 

Ak (u)Ak2(n)Ak3(u) = E Ck(nf)tn, k - k, + k2 + k3, 
n) 1 

Ak,(u)Ak2(u)Ak3(u)Ak4(u) = E dk(n)tn, k = k, + k2 + k3 + k4. 
n I 

TABLE II 

Particular choices of partitions used in the present computation for applying the basis 
theorem of cusp forms. For example, F(2) ' A 42 + X/\201 22 + YAA2A x When dim Ck 
= 1F = Ak 

dim C; Partitions 

2 24 = 12 + 12 
2 28 = 12+ 16 
2 30 = 12 + 18 
2 32 = 16+ 16 
2 34= 16+ 18 
2 38 = 18+ 20 
3 36= 18+ 18= 12+ 12+ 12 
3 40=20+20= 12+ 12+ 16 
3 42 = 20 + 22 = 12 + 12 + 18 
3 44 = 22 + 22 = 12 + 12 + 20 
3 46 = 22 + 24= 12 + 16 + 18 
3 50 = 24 + 26 = 16 + 16 + 18 
4 48=24+24= 16+ 16+ 16= 12+ 12+ 12+ 12 

k = I = k2, + 3= + = - = I + + k,, I < < 
dim CA dim CA, k,, are positive integers, none equal to weights I such that 

dim C= 0, i.e., k,, > 12, k,, * 14. 
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Then for the partitions in the above table, trace Tk(2) = 3ak(2) Ck(8)/Ck(4) for 
dim Ck = 3 and trace Tk (2) = bk (4) for dim Ck= 2. 

Consider a cusp eigenform Fk with coefficients Xk( n). From the special multiplica- 
tive property for eigenforms of H-ecke operators and any prime p we have the 
relations 

Xk( p2) = Xk( p)2 _ pkI 

Xk( P') = Xk( P)3 - 2pk- Xk(P), 

Ak(p ) = Xk(p) - 
3pk-Xk ( p)2 + p2k-2 

There are three cases for the present dimensions. 
Case 1, dimCk = 2. Let Xk(n) = ak(n) + xbk(n). Then ak(4) + bk(4) = 

(x + ak(2))2 - 2'- '. Since 2ak(2) = bk(4) as noted above, the coefficient of x in 
this quadratic equation is zero, and x2 = - I+ ak(4) - a2(a), dim Ck = 2.Thus, 

F2P8= A24 + (-1)8A12 22 3V144169, 

F2(8?= A28 + (-1)8A12A6 2 33X131 139, 

F3(' ) = A3+(-1)a A 25 3/5 1349., 30~ A30 + (-l)SA12AI82.3549 

F3')= A32 + (-l) A26 .22. 367 273067, 

34= 34 + (- 1)8A16A18 23 32 479 4919, 

F'8 ) = A38 + (-1)8A18A20 2 4 3V181 349- 1009. 

We see that for dim Ck = 2 the Fourier coefficients of cusp eigenforms are quadratic 
integers. These discriminants agree, k = 24 with Hecke [11] and Rankin [32], all 
other k * 32 in this list with Lehmer [22] where for k = 32, 18295849 is given 
(evidently a misprint) instead of 18295489 = 67 - 273067. The algebraic number 
coefficients can be easily read off from the tables of coefficients of Ak and Ak,Ak,- 

Case 2, dimCk= 3. Let Ak(n) = ak(n) + xbk(n) + yck(n), n > 1. Again, making 
use of the algebraic relations among Ak(2), Ak(4), Ak(8), eliminating y and the fact 
that 3ak(2) = ck(8)/ck(4) (which makes the coefficient of x2 zero) and omitting the 
details, we see that x must satisfy the cubic equation 

x + (3ak(2)bbk(4) - bk(8) - 3(ak(2))2 - 2k)x 

+ 3ak(2) ak(4) - ak(8) - 2(ak(2))3 + 2 kak(2) 

= x3 + A,x + Ao = 0. 

Since the Hecke operators are Hermitian this equation has three real roots and 
negative discriminant. There is a cusp eigenform corresponding to each root x and 
corresponding value of y such that 

yCk(4) = x + (2ak(2) - bk(4))x + ((ak(2))2 - 2k - ak(4)). 

The prime factors of cubic discriminant for k = 36 agree with the prime factors 
found in the discriminant of Lehmer [22] for his more complicated cubic. The 
coefficients and discriminant for dim Ck = 3 are in Table III. 
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TABLE III 

The cubic equation x3 + AI x + A0 = 0 for dim Ck= 3 cusp eigenforms of Hecke 
operators for SL2(Z). The associated coefficients x, y for a given dimension can be 
distinguished by their signs. 

k A, A0 discriminant = A3/27 + A0/4 

36 _26 3 719 475991 -2'?* 13 17 367 -22. 37 . 52 . 72 . 23. 1259 . 
. 4133 .12893 269461929553 

40 _26 .34. 137 1281971 +2'? 37 . 11 . 17 224 .39. 52 . 72 . 132 .73 . 59077. 
.126781843 92419245301 

42 _2X 3 373 .164893 +2'3 . 11 . 127 . -232 . 37 . 52 .72. 
*18791834161 1465869841 578879197969 

44 -26 3 .-2'? 13 . 191 -226 37 . 52 . 72 . 172 . 37. 
.90059756926 300441338170 . 92013596772457847677 

46 -2 I233 8273 +2'9 .33. 13 - -237 . 31 .52.72.227 . 
*53987 137341 .454287770269681529 

.2947853 

50 -2X .3. 19. -2'3 11 13 31 -23 . 39.54.74 . 
52245512611 26107 . 12284628694131742619401 

* 8443679383 

Case 3, dim Ck = 4. We will only compute the k = 48 case. In general 

Ak(n) = ak(n) + xbk(n) + yCk(n) + zdk(n), 

where for k = 48 we have chosen coefficients a, b, c, d according to the appropriate 
equations above and the partitions of Table II corresponding to dim Ck= 4, A48, 

A24, A16, A12, respectively. Including the algebraic relation for Xk(16) and the fact 
that, for k = 48, and probably for all of dim Ck = 4, 

trace Tk(2) = Ck(16)- Ck(4) dk(16) 
trac Tk() = ck(8) - Ck(4) dk(8) 

(making the coefficient of x3 zero), we see that each x satisfying the quartic equation 
below yields a value for y and z. 

x4 + (4ak(2) dk(8) - dk(16) - 6(ak(2))2 - 3 * 2 )x 

+ (2kak(2) - 8(ak(2))3 + 8(ak(2))2 dk(8) 

-2ak(2)dk(16) + bk(4)dk(16) 

-bk(16) + 4ak(2)bk(8) - 4ak(2)bk(4)dk(8))x 

+ 5 2 k- ( ak (2))2 - 3(ak(2))4 + 4(ak(2))3 dk(8) 

-2k+ ak(2) dk(8) - (ak(2))2 dk(16) + 2 kdk(16) - ak(16) + ak(4) dk(16) 

+4ak(2) ak(8) - 4ak(2) ak(4) dk(8) + 22k-2 

= X4 + B2x2 + B x + Bo = 0, 

Y(Ck(8) - Ck(4)dk(8)) 
- X3 + (3ak(2) - dk(8))X2 

+ (bk(4) dk(8) - bk(8) + 3(ak(2))2 - 2ak(2) dk(8) -2 k)x 

+ (ak(2))3 + ak(4) dk(8) -ak(8) - 2 kak(2) - (ak(2)) dk(8) + 2 kIdk(8), 

z = x 2+ (2ak(2) -bk(4))x -yck(4) + (ak(2))2 - ak(4) - 2k- . 
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For k = 48, we have summarized these relations explicitly in Table IV. 

TABLE IV 

Relations among the x, y, z algebraic number coefficients for k = 48, dim C4X - 4. 

These four can be distinguishled by their signs. 

X4- 479694638227032x2 
- 627209402058296734417848000x 
+ 3487967857408330733116234450 = 0. 

7115931648y 

= 14412909x - 453537008666100x 
- 307227177902706951240. 

z = 92 + 2261700x - 648v 
- 239847319112868. 

4. Computations and Tables of Coefficients and Zeros. The approximate locations 
of three zeros of L,2 (k = 12) were found by Spira [40]. We checked his tables and 
found them to agree with ours, to the extent of his precision, although his method of 
computation was somewhat different. Other kinds of L-functions have been dealt 
with in Purdy, Terras and Williams [29] and Lagarias and Odlyzko [18]. 

For each L;, k such that the dimensions of the spaces of cusp forms of weight for 
SL2(Z) be less than four and k = 48 for dim C,, = 4, the winding number was 
computed for the boundary of the strip IRe(s) - k/21 < 1/2, Ilm(s)l < 40 by taking 
small steps in real and/or imaginary parts. The functional equation of holomorphic 
Lk(s) reduces this computation to essentially a fourth of the boundary. All zeros 
found were simple. A few zeros were computed for Im(s) > 40. Since the functions 

Lk(k/2 + t -1 ) are either real or purely imaginary all the zeros on this line 
k/2 + tV- I were found by standard real techniques, a combination of Newton and 
secant methods. 

The positional values of the positive zeros of eigenfornms appear in Figure 1. The 
signs following the weights disting,uish among the eigenforms of the same dimension 
and are the signs of the coefficients of the x's, x, y's or x, y, z's. For each k the 
position of t for a zero k/2 + tV'- 1 is given. For dim CA < 4 there are no other roots 
in the critical rectangle k/2 + e + tv/ -1 < 0 K X, -40 < t < 40, for dim C;, = 4, 
-30 < t < 30. In the UMT deposit zeros have been listed with an accuracy begin- 
ning with twenty decimal places; in many cases zeros beyond t = 40 have been 
found. 

In addition to zeros of the Lk (s), zeros, niumber and simplicity were computed for 
Mellin transforms of the Ak, sums of Lk,'s. Of course, the gamma factors of the Lk, k 
fixed, are the same so the functional equations persist for Mellin transforms of cusp 
forms even .though there may not be an Euler product. 
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Figure 2 contains positional values of t, jtj < 30 similar to those in Figure 1. The 
dim CA = 1 part of Figure 1, where A. = Lk, reappears in Figure 2 for comparison. 

Again, the zeros are simple and linearly arranged. 
A comment on available precision is that as long as the coefficients of the series 

are integers < 1021 precision is not limited by the coefficient accuracy, but for 
dimCA > 1 the coefficients are real numbers but not integers. A measure of their 
precision comes from the specially multiplicative properties of the coefficients. The 
precision of the zeros given in the UMT file is a reflection of these and similar 
roundoff considerations. 

Preliminary factorizations of up to the first twenty Fourier coefficients arising for 
the dimensions considered here appear in the UMT file. For example, the nth 
coefficient of ,AAAk2 is listed after the equal sign following (k1, k2, n). All prime 
factors less than or equal to 8009879 have been sieved out and are printed to the 
appropriate power. Any remaining integer not followed by a period is prime. If an 
integer is followed by a period, its factorization may be investigated by the 
techniques of [26] and [47], [48]. We thank Hugh C. Williams of the University of 
Manitoba for identifying factors and/or primality of most of these larger integers. 

TABLE V 

Zeros of L 2(s) = F(s) >- I (n)1(27n) , 

the Dirichiet series of Ramanujan-Rankin. 

t values of roots 6 + t[-I, 0 < t < 40, truncated to twenty or the number of significant 
decimal digits available for the function value. Those below the line with t > 40 have not been 
counted nor proven simple. There are no other roots in the critical rectangle 6 + E + tilT, 
0 < 2 , -40( t S 40. 

t 

1 9.222379399 2110252224 
2 13.9075498613 921344064 
3 17.4427769782 34473313 
4 19.6565131419 5496099 
5 22.3361036372 09867 
6 25.2746365481 12379 
7 26.8043911583 5055 
8 28.8316826241 89 
9 31.1782094982 8 

10 32.7748753809 
11 35.196995715 
12 36.74146106 
13 37.7539078 

14 40.219064 
15 41.73076 
16 43.5975 
17 45.118 
18 48.88 
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k il111 ili liih ginhliili 
12 1 g 1 s I I i 
16 I I i ii 
is 1II g I i I 1 1 
20I ii IIIi ii li 

24- I II I ii Ii i 

304 i I II Ii Ii I 
30- j I ; I I I I II I I li 
32+ I i I I I IiI I 

34+ I I i I I I e I i i i 
34-I iiIIc u i lgi 

364 g g i I lii i g g 

40--+ ii I IIi ii i i i 
40*- g i I g g g Ii I i l l i 
40*. i e ig i ii Ii 

42-- Ii1 i 1 ii ii 11 1 
44-- I I 1 I g 1l i i i i i c 
44++ I i I iii gs I 
44-+ ii iiIle iI iel 
46+4 8 i i i I i I i ii 
464'- I I Ij1 i iii i 
46-- ii I g iI i I 
50-+.g I 
50++ 1 i i li i 
50-'- i t i i i g , tl 

48+-- I I I I I I I I i 

Zeros of the first forty Mellin transformed cusp eigenforms of dimensions 1, 2, 3,4 located in 
the associated critical strips. The strips are k - 1 < 2 Re(s) < k + I, where the k 's are given 
in Table I, IIm(s)I < 40 for dimensions 1, 2,3 and I1m(s)l 4 30 for dimension 4. Fixing 
Re(s) - k/2, Im(s) - t, the scale markers top and bottom are spaced one unit apart 
beginning at t- 0 on the left with t increasing to the right. The lines of zero locations are 
identified by integers k followed by the distinguishing signs of the algebraic number 
coefficients of the basis cusp forms as decribed in the text. All zeros in the respective strips are 
simple and are arranged on the line Re(s) -k/2. 

5. Infiniltely Many Zeros of Lk (SI f),f E- Ck, Lie on the Critical Line k/2 + W~IT 
We have for f = Ck, f a cusp form, that 

-k ''k (t'f) = Lk(k/2 + tvF-IT,f) 

+ (~1k/2u/2tPf(u)) dlog u 

2 u/2f (eu)cos tu du, if k/2 even, 

"oek u2 
eu)intu du, if k/2 odd. 
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By the functional equation of Lk, 

so that -k (t) is an even or odd function of t according as k/2 is even or odd. 
Let us write Fk (u) = eku/2f(e u). A direct translation of the facts that f is a cusp 

form (even though not necessarily a cusp eigenform) and has a functional equation is 
that Fk satisfies the functional equation 

Fk(_U) = (_I )k2Fk(U). 

Thus, -k (t) is a Fourier transform of an even or odd function according as k/2 is 
even or odd. 

By the Riemann-Lebesgue lemma, or directly by integration by parts, Ok(t) -o 0 
as t - oo. Note that Fk(u) is an exponentially rapidly decreasing function of real t 
so that 0k(t) is an entire function. 

There is a criterion of Hardy-Polya, Polya [28], which (after slight modification to 
include the odd case) is applicable to the present context of the Fourier transform of 
Fk(u): the cosine (sine) transform of an expontially rapidly decreasing even (odd) 
function. Essentially, the criterion states that if the Fourier transform '-Ik(t) has only 
a finite number of real zeros, then there is some integer N, such that for n > N, 
IFP')(iw)l is a monotone increasing function of w, 0 < w < W, where iW is the 
singular point of Fk( u) which is next to the origin. In the present case, W = 'g/2 and 
from the functional equation for f, IFk()(iw)l -O 0 as w 7T /2, for all n > 0. The 
last relation follows from the way in which the cusp form F(,E) -* 0 as E 0, SO that 
the proof sketched here requires that f be a cusp form, cf. Hafner [13]. 

THEOREM. Let Ck be the vector space of cusp forms of weight k for SL2(Z). For each 
f E Ck with real Fourier coefficients let Lk(s, f ) be the Mellin transform of f with 
functional equation 

Lk(k - s,f) = (- 1)k Lk(s, f ). 
Then infinitely many of the countable number of zeros of Lk(s, f ) have real part k/2, 
i.e., are of the form k/2 + tVIT, t real. 

6. A Measure Theoretic Argument About Hasse-Weil L-Functions. We observe 
that the L-functions we introduced previously, the L-series attached to cusp forms 
on SL2(Z), are factors of the Hasse-Weil L-functions of Kuga varieties. Our 
computations provide examples of calculating some zeros of nontrivial Hasse-Weil 
L-functions. Our theorem on infinitely many zeros of cusp forms is an assertion 
about nontrivial Hasse-Weil L-functions. 

Let X denote a projective smooth scheme. Let X/F( pf), n > 1, cardinality N"( p), 
denote the version of X over the finite field F( pnf). There exist finite integers dim X, 
0 < bi, 0 < i < dim X, algebraic integers ai1, 1 <j < b,, laijl2 = p' (Riemann hy- 
pothesis over finite fields), polynomials with coefficients in Z, 

Pi(T)= H (1-ai1T), 0 < i < dimX, 
I j] b, 

such that, Pi(0) = 1, 

exp E N1(p)TT/nl= H P2j-I(T)/P2j(T). 
n > I <Oj < dim X 
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The ith Hasse-Weil L-function is defined to be 

L,(s; X) = /P, ) 
p) 

where the product is over all but finitely many primes p. For definitions see Weil 
[50], Deligne [5], Katz [15], Serre [38]. The generalized Riemann hypothesis is the 
conjecture that all nontrivial zeros lie on the line Re(s) = (i + 1)/2. For the 
example of X = {point), P((T) = 1 - T, L((s; pt) = c(s), the classical Riemann 
zeta function. Rosser et al. [34] and subsequently Brent [4] exclude counterexamples 
from a strip, e.g., 0 < Re(s) < 1, IIm(s)l < C containing 150 million zeros, C = 
32,585,736.4. The examples of cusp forms arise from X = a Kuga variety. Then 

H4(T, f, p), the Hecke polynomial introduced above, divides the Betti polynomial 
P- (T). Our computations described above exclude counterexamples from various 
stripsk- 1 <2Re(s)<k+ 1,Im(s)<40,k=i+ 1. 

Parametrize the unit interval [0, 1] in the essentially one-to-onle way by biniary 
expansions t~ E(1 + ts )/2"+', t, = ? 1, n > 1 for the montone sequence of 
prime numbers {p,,) = {p). Then measure the product space {? I)' of sequences 

{tp) with the Lebesgue measure from [0, 1]. 
Let -,,, n in some countable index set, be fixed complex numbers. Then almost all 

of the series Et,1z,t are convergent if EIz,,12 is convergent. Cf., Kolmogorov [16], Levy 
[23], Wintner [51], Billingsley [3]. 

,. I I illIIIII I iiI II I I I I I I !fI 
;n ~ ~ ~ ~ ~~~ ~~ ~~~~~~~~~~~I I I I I I I 
lo m ~~~ ~ ~ ~ ~~~~~ ~~~~~I I i I I I I 
18 ~~ ~ ~~ ~ ~~~~~ ~ ~ ~~~~~I I I I I I 

-0 ~ ~ ~ ~ ~~I I I I I II 
_ ~ ~ ~ ~ ~ ~~~I I I I I I I I I II 7_ 7 

_,_ 

_I I I I I I I I 
I 

-,tI I I I I I I I I I 
-8 1 I I I I I I I I I 

0 ~ ~ ~ ~ ~~I Ij I I I I I I I 
.I_i II I I I I I I I I 
*_~~ ~ ~ ~ ~ I I I I I I i t 

I g I 1 1 I I 

Wn ~~~~~I I I I I I I I I I I 

k I I I I I f I II I I I I I I I I I I I I I t I I t | I I I I 

FIGURE 2 
Zeros of the first nineteen Mellin transformed cusp fo)rms 5; with Fourier coefficients the 
traces of the Hecke operators TA . k all possible weights for the dimensions 1. 2, 3. 4. All zeros 
in the strips k - I < 2 Re(.s) K k + I, jIm(s )j < 30 are simple and lie on the line Re(.s) = h/2. 
For t=Im(s). the scale markers top and bottom are positioned at = 0.* 1.2,.3.. 
increasing to the right. Each line of zero locationis is identified by the weight A of the 
a.ssociated cusp form. These numerical fact.s together with the theorem in thc text on 
infinitude of zeros on the critical line s;uggest that a Riemann type hypothesis may be true for 
ant' cu.sp form of SL2(Z). It may be this hypothesis is false for cusp forms of discrete group)s 
for which the Ramunujan-Petersson conjecture fails. 
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The convergence of the reciprocal of the L-series L,(s; X) is dependent on the 
convergence of the product and the sum, p- + 1, 

H1 - ttpa1,,(P)P-'), Etpa,, (P)p' 
I P 

In general, define the pseudo L-function L,1,(s, X) for arbitrary t E [0, 11. For finite 
fields, l1a,(p)P2 = p', so the sum converges for i/2 - Re(s) < -1, or I + i/2 < 
Re(s) as previously noted. But for almost all t ( [0, 11, the sums converge as long as 
i - 2 Re(s) < - 1, or Re(s) > (1 + i)/2. Thus for almost all t E [0, 11 the pseudo 
L-functions, L,1,(s, X), have reciprocals 1/L,, which converge in the half-plane 
Re(s) > (1 + i)/2; so most L,, have no zeros there and can be said to satisfy a 
generalized Riemann hypothesis. They may not have functional equations nor 
analytic continuations although they are Euler products. Of course, the set of 
(nonpseudo) geometric L-functions is countable and has measure zero in the 
measure used here. 

We thank the referee for a number of helpful comments, particularly for the 
suggestions of presenting the tables of zeros in graphical form as in Figures I and 2. 
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